For transparency’s sake - those are my notes while learning about pandas from this tutorial. At times this here is just copy-paste from it, at others, it’s my own thoughts and explanations. This is meant to be a condensed version of the tutorial more or less just for me. If you found it useful though, well, good for you, I guess.
Abstract
Basic
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational Heterogeneous data” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open-source data analysis/manipulation tool available in any language. It is already well on its way toward this goal. It’s like database-like objects to deal with your data.
- data could be loaded from .csv files and be written again
- some basic statistical analysis is possible
Features
A shortlist of features as advertised on the official site of pandas.
- Fast and efficient DataFrame object with the default and customized indexing.
- Tools for loading data into in-memory data objects from different file formats.
- Data alignment and integrated handling of missing data.
- Reshaping and pivoting of data sets.
- Label-based slicing, indexing, and subsetting of large data sets.
- Columns from a data structure can be deleted or inserted.
- Group by data for aggregation and transformations.
- High-performance merging and joining of data.
- Time Series functionality.
Tl;DR
Managing data in structures and easily manipulating the data.
Basic Structures
DataFrame
It’s like a table in RDB.
- Columns are attributes
- Rows are the actual data
- Indices are the labels for each row
This is the most common object when dealing with data and using pandas. The data in the object is heterogeneous, the shape and the size are mutable. The last part means that the models you build in one object that contains data can easily(ish) be transformed into another model(by model I mean the way your data is structured- names and count of columns(attributes), indexing of the rows, type of the data inside). The basic construction of the DataFrame object is as follows:
pandas.DataFrame( data, index, columns, dtype, copy)
data
- ndarray, series, map, lists, dict, constants..etc. The raw data that will be stored in the DataFame. This could be for example a list of lists. In this case, the ‘inner’ lists will become the columns and the column names will be given through columns. The number of the columns must be the same as the number of inner listsindex
- the ‘names’ of the rows. Usually just an index (0,1,2,3….). The size of this must be the count of the entries in the datasetcolumns
- the names of the columns- … - the other ones are none of our concern
Some of the constructions:
import panda as pd
import numpy as np
data = [['Alex',10],['Bob',12],['Clarke',13]]
df = pd.DataFrame(
data,
columns=['Name','Age'])
df = pd.DataFrame(
np.random.randn(10, 3),
columns = ['col1','col2','col3']
)
data = {
'Name':['Tom', 'Jack', 'Steve', 'Ricky'],
'Age':[28,34,29,42]
}
df = pd.DataFrame(data)
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
d = {'one' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'two' : pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
All of the constructions are pretty intuitive and easy to understand. The thing to remember - all of the possible way that you can construct DataFrame. The column selections is just as easy:
df['column_name'] # return an Series containing the data in the respective column
Adding of columns is possible:
#Adding a new column by passing as Series
df['new']=pd.Series([10,20,30],index=['a','b','c'])
print df
as well as deletion:
del df['important']
Selection of rows either by index or by lable (the thing that was in the index attribute in the constructor)
df.loc['b'] # by lable
df.iloc[2] # by index
df[2:4] # splicing
Appending rows to an existing DataFrame
df = pd.DataFrame([[1, 2], [3, 4]], columns = ['a','b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns = ['a','b'])
df = df.append(df2)
Series
Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.). The axis labels are collectively called index. Construction:
pandas.Series( data, index, dtype, copy)
The same thing as the DataFrame! Some examples:
data = np.array(['a','b','c','d'])
s = pd.Series(data,index=[100,101,102,103])
data = {'a' : 0., 'b' : 1., 'c' : 2.}
s = pd.Series(data)
print s[0]
print s[1:3]
print s[-3:] # the last three elements
DataPanel
From what I understand, this is not widely used and I don’t think I need it for my project so… nah. Skip!!!
Basic usage
DataFrame basic function
The most useful functions of the DataFrame-class
T
: Transposes rows and columns.axes
: returns a list with the row axis labels and column axis labels as the only members.dtypes
: Returns the dtypes in this object.empty
: True if NDFrame is entirely empty [no items]; if any of the axes are of length 0.ndim
: umber of axes / array dimensions. This is just twoshape
: Returns a tuple representing the dimensionality of the DataFrame. The first element is the number of rows, the second - the number of attributessize
: umber of elements in the NDFrame.values
: Numpy representation of NDFrame.head()
: Returns the first n rows. Could be used asdf.head(n)/df.tail(n)
to get the first/last n elements.tail()
: Returns last n rows.
Basic statistics
A bunch of simple ‘statistical’ functions can be applied on the columns of a DataFrame object. Those include:
count()
: Number of non-null observationssum()
: Sum of valuesmean()
: Mean of Valuesmedian()
: Median of Valuesmode()
: Mode of valuesstd()
: Standard Deviation of the Valuesmin()
: Minimum Valuemax()
: Maximum Valueabs()
: Absolute Valueprod()
: Product of Valuescumsum()
: Cumulative Sumcumprod()
: Cumulative Product
An example that demonstrates some of these:
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
#Create a DataFrame
df = pd.DataFrame(d)
print df.mean()
print df['Age'].mean()
print df['Age'].min()
print df['Age'].max()
print df['Age'].std()
There exists also a describe
function that shows summarized information about the data in the DataFrame. This includes mean
, std
and IQR values. The function excludes the textual columns and looks only at the numeric columns. include is the argument which is used to pass necessary information regarding what columns need to be considered for summarizing. It can be:
object
− Summarizes String columnsnumber
− Summarizes Numeric columnsall
− Summarizes all columns together
import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack',
'Lee','David','Gasper','Betina','Andres']),
'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
#Create a DataFrame
df = pd.DataFrame(d)
print df.describe()
This gives us:
Age | Rating | |
---|---|---|
count | 12.000000 | 12.000000 |
mean | 31.833333 | 3.743333 |
std | 9.232682 | 0.661628 |
min | 23.000000 | 2.560000 |
25% | 25.000000 | 3.230000 |
50% | 29.500000 | 3.790000 |
75% | 35.500000 | 4.132500 |
max | 51.000000 | 4.800000 |
OK, kinda. The table is from me and I am kinda showing off.
Applying Functions on data in DataFrame
There are a few ways that we can transform a DataFrame into another one by applying a map-like function on the data. Depending on our needs we have the following options:
pipe()
- Table wise Function Application:apply()
- Row or Column Wise Function Applicationapplymap()
- Element wise Function Application
Piping
From the official documentation:
Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects
From what I understand - One would use that when applying a bunch of functions on all elements of DataFrame (or whatever) while still having the possibility that the applied function takes more than just one argument. For example, let’s add two to every element in DataFrame through an adder function that just adds its two arguments.
import pandas as pd
import numpy as np
def adder(ele1,ele2):
return ele1+ele2
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df = df.pipe(adder,2)
print(df)
We can also do something like this:
df.pipe(foo_fun1, arg1=1).
pipe(foo_fun2, arg2=2).
pipe(foo_fun3, arg3=3)
This applies the three functions one after the other while the second argument of those functions is 1, 2 and 3.
Applying
The apply
function of DataFrame applies function on whole columns(or rows). The given function to be applied must take one argument - Series - and return again a Series. Think of it like that - they give you a whole array of numbers, you make something with it and give back a different (or not different) array of the same size. An illustrative example:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
return df.apply(np.mean)
Which gives us:
col1 0.228874
col2 -0.561032
col3 -0.321606
dtype: float64
Note how the np.mean return a single number so in the final result there is only one row - the mean of each column.
ApplyMap
Not all functions can be vectorized (neither the Numpy arrays which return another array nor any value), the methods applymap()
on DataFrame and analogously map() on Series accept any Python function taking a single value and returning a single value. This is similar to the pipe but it’s less flexible. It just treats the whole DataFrame as on a big list and performs a mapping function on it. Example:
import pandas as pd
import numpy as np
# My custom function
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
return df.applymap(lambda x:x*100)
With result:
col1 col2 col3
0 124.741017 -39.997356 -197.724001
1 -83.817763 56.487720 -16.127531
2 173.797264 187.089676 -38.871016
3 -94.927338 -60.133882 15.271702
4 -167.875460 83.420648 -179.131762
Iterating and sorting over data in structures
Iterating DataFrame
Using a DataFrame object in a plane for-loop iterates over the names of the columns.
import pandas as pd
df = pd.DataFrame({
'A': [1,2,3,4,5],
'x': [1,2,3,4,5],
'y': [1,2,3,4,5],
'C': [1,2,3,4,5],
'D': [1,2,3,4,5]
})
for col in df:
print(col)
This just prints A, B, C,…,etc.
A
C
D
x
y
Iterating over the date in the DataFrame can be done in several ways:
iteritems()
− to iterate over the (key,value) pairs. Key here again is the ‘index’-name-thing that is configurable through the index in the constructor.iterrows()
− iterate over the rows as (index,series) pairs. Here the index is just a number.itertuples()
− iterate over the rows as named tuples
The most useful of the above is probably iterrows()
.
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row_index,row in df.iterrows():
print(str(row_index) + "\n" + str(row))
0
col1 2.117955
col2 -0.263560
col3 -0.600124
Name: 0, dtype: float64
1
col1 -0.620081
col2 -1.355647
col3 -0.568608
Name: 1, dtype: float64
2
col1 1.792265
col2 -0.494137
col3 -1.395912
Name: 2, dtype: float64
3
col1 -1.189506
col2 -0.479746
col3 0.329728
Name: 3, dtype: float64
To note is that the iterated row-objects contain information for each column so if you want to get the second column of the row:
row.col2
Sorting DataFrame
There are two possibilities for sorting:
- By lable - i. e. by index
- By value of some column
The first one is useful when the data is saved out of order. By appropriately creating the index in the construction and then sorting by lable, you can load the data in memory in the right order. The two functions are:
sort_index([ascending=True/False])
sort_values(by=col_name,[ascending=True/False])
By default ascending is set to True. Example:
import pandas as pd
import numpy as np
unsorted_df = pd.DataFrame(
np.random.randn(10,2),
index=[1,4,6,2,3,5,9,8,0,7],
columns = ['col2','col1']
)
sorted_index_df = unsorted_df.sort_index()
sorted_val_df = unsorted_df.sort_values(by='col2')
print(sorted_index_df)
print("-------------")
print(sorted_val_df)
Output:
col2 col1
0 0.562948 0.768513
1 1.776865 -0.217141
2 -0.040029 -2.300772
3 -1.695105 0.294038
4 0.163922 0.934361
5 0.998288 -1.149822
6 -0.641102 0.539689
7 1.190690 0.027898
8 0.745714 0.916117
9 0.144558 2.581345
-------------
col2 col1
3 -1.695105 0.294038
6 -0.641102 0.539689
2 -0.040029 -2.300772
9 0.144558 2.581345
4 0.163922 0.934361
0 0.562948 0.768513
8 0.745714 0.916117
5 0.998288 -1.149822
7 1.190690 0.027898
1 1.776865 -0.217141
Slicing
There are several custom ways of slicing through data that are optimized and are the recommended way of slicing data when dealing with production code.
-
loc() - label based indexing. Used as df.loc[</rows/>,</columns/>]. For rows and columns could be given pretty much everything that makes sense - single char, list of labels, slice object, boolean array.
df.loc[['a','b','f','h'],['A','C']]
-
iloc() - index based indexing. Used the same way as loc() but just with integer indices.
df.iloc[1:5, 2:4]
Tougher statistics
Some functions
There are some useful statistical functions already in pandas that help with the understanding and analyzing the behavior of data
-
Percent_change -This function compares every element with its prior element and computes the change percentage.
import pandas as pd import numpy as np s = pd.Series([1,2,3,4,5,4]) print(s.pct_change()) print("-----") df = pd.DataFrame(np.random.randn(5, 2)) print(df.pct_change())
Gives us:
0 NaN
1 1.000000
2 0.500000
3 0.333333
4 0.250000
5 -0.200000
dtype: float64
-----
0 1
0 NaN NaN
1 -1.156977 -16.169034
2 0.234270 -0.647137
3 -3.203838 -1.043420
4 -1.548769 -9.686350
The first row is NaN because there is no previous element to compare it to.
- Covariance - the Series object has a method cov to compute covariance between two objects.
import pandas as pd
import numpy as np
s1 = pd.Series(np.random.randn(10))
s2 = pd.Series(np.random.randn(10))
print(s1.cov(s2))
Output:
-0.23077206068332465
NaN values are ignored automatically.
- Correlation - the natural follow up of course.
import pandas as pd
import numpy as np
frame = pd.DataFrame(np.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e'])
print( frame['a'].corr(frame['b']))
print("-------")
print( frame.corr())
The latter table shows in each cell shows what is the correlation between the respective columns.
0.584632830437208
-------
a b c d e
a 1.000000 0.584633 0.178898 -0.199928 -0.073022
b 0.584633 1.000000 0.045907 0.111284 0.006680
c 0.178898 0.045907 1.000000 -0.455127 0.065576
d -0.199928 0.111284 -0.455127 1.000000 -0.596656
e -0.073022 0.006680 0.065576 -0.596656 1.000000
Window statistics
Some of the supported operations are:
- Rolling - Imagine a window that rolls over the data and computes ‘something’ with the elements that are currently in the window. Usueall the restult is written then in the first element of the wondow. The function in use here is rolling(windows=/window_size/)
import pandas as pd
import numpy as np
df = pd.DataFrame(
np.random.randn(10, 4),
index = pd.date_range('1/1/2000', periods=10),
columns = ['A', 'B', 'C', 'D']
)
print(df.rolling(window=3).mean())
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 0.448896 -0.457281 -0.320112 -0.629398
2000-01-04 0.142268 -0.523835 -0.627615 0.228978
2000-01-05 -0.200259 -1.242848 -0.683303 -0.575579
2000-01-06 -0.867429 -0.211049 -0.207560 0.048380
2000-01-07 -1.117081 -0.268690 0.053126 -0.376906
2000-01-08 -1.117306 0.142617 -0.295222 -0.505522
2000-01-09 -0.324298 -0.065450 -0.333431 -1.186115
2000-01-10 -0.186834 -0.131418 -0.530804 -0.624335
The window is big 3-elements and therefore the first two rows don’t have the needed neighbors.
-
Expanding - Calculate something for the first element, then for the first and second together, then for the first, second and third together and so forth. This is done with expanding(min_periods=n). min_periods shows when the computations begin (the number of rows needed in order the generated row not to be NaN).
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print(df.expanding(min_periods=3).mean())
A B C D
2000-01-01 NaN NaN NaN NaN
2000-01-02 NaN NaN NaN NaN
2000-01-03 1.330880 -0.758586 0.172522 0.657721
2000-01-04 1.161148 -0.147130 -0.110188 0.473314
2000-01-05 0.565535 0.120415 -0.038158 0.647995
2000-01-06 0.721102 0.268228 -0.037819 0.563833
2000-01-07 0.734176 0.232185 -0.090012 0.420967
2000-01-08 0.681839 0.240921 -0.204159 0.223472
2000-01-09 0.772570 0.121897 0.053970 0.105342
2000-01-10 0.837397 0.266325 0.109070 0.280632
-
Exponentially moving weights - Not sure for the exact mathematics of this one, but…it averages the data in some weird way. It’s used to get the ‘general idea’ for the behaiviour of the data
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10, 4), index = pd.date_range('1/1/2000', periods=10), columns = ['A', 'B', 'C', 'D']) print( df.ewm(com=0.5).mean())
Grouping and Aggregating
In many situations the following ‘pipeline’ occurs:
- Split and object by grouping it entries by some key
- Perform some operations to get a single number for each group
- Combine the result into a new object
The second step could have some variations. Maybe we can want to transform or filter the data but the general idea stays. Pandas offers some great functions to achieve all of this. Firstly, in order to create the groups we can use the groupby() function. It can take the name of single column or multiple ones. In the latter case, the appropriate combinations between the keys of the columns are generated. Each combinations is it’s own group. Once the grouping object is created, the groups can be examined with gr.groups
. The groups can also be easly iterated over. Selecting a group is also easy by specifying its key. Summarizing example:
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
gr = df.groupby(['Team','Year'])
print(gr.groups)
print("------")
for name,group in gr:
print(name)
print(group)
print("-----")
print(gr.get_group(('Riders', 2014)))
{('Devils', 2014): Int64Index([2], dtype='int64'), ('Devils', 2015): Int64Index([3], dtype='int64'), ('Kings', 2014): Int64Index([4], dtype='int64'), ('Kings', 2016): Int64Index([6], dtype='int64'), ('Kings', 2017): Int64Index([7], dtype='int64'), ('Riders', 2014): Int64Index([0], dtype='int64'), ('Riders', 2015): Int64Index([1], dtype='int64'), ('Riders', 2016): Int64Index([8], dtype='int64'), ('Riders', 2017): Int64Index([11], dtype='int64'), ('Royals', 2014): Int64Index([9], dtype='int64'), ('Royals', 2015): Int64Index([10], dtype='int64'), ('kings', 2015): Int64Index([5], dtype='int64')}
------
('Devils', 2014)
Points Rank Team Year
2 863 2 Devils 2014
('Devils', 2015)
Points Rank Team Year
3 673 3 Devils 2015
('Kings', 2014)
Points Rank Team Year
4 741 3 Kings 2014
('Kings', 2016)
Points Rank Team Year
6 756 1 Kings 2016
('Kings', 2017)
Points Rank Team Year
7 788 1 Kings 2017
('Riders', 2014)
Points Rank Team Year
0 876 1 Riders 2014
('Riders', 2015)
Points Rank Team Year
1 789 2 Riders 2015
('Riders', 2016)
Points Rank Team Year
8 694 2 Riders 2016
('Riders', 2017)
Points Rank Team Year
11 690 2 Riders 2017
('Royals', 2014)
Points Rank Team Year
9 701 4 Royals 2014
('Royals', 2015)
Points Rank Team Year
10 804 1 Royals 2015
('kings', 2015)
Points Rank Team Year
5 812 4 kings 2015
-----
Points Rank Team Year
0 876 1 Riders 2014
Now comes the fun part. The agg() function returns a single aggregated value for each group. It takes a function on its own that does the actual work. Many of the numpy functions are supported. Multiple aggregations per agg() call are also possible. To note is that agg() is usually applied to single column
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
print(grouped['Points'].agg(np.mean))
print("----")
print(grouped['Points'].agg([np.sum, np.mean, np.std]))
Year
2014 795.25
2015 769.50
2016 725.00
2017 739.00
Name: Points, dtype: float64
----
sum mean std
Year
2014 3181 795.25 87.439026
2015 3078 769.50 65.035888
2016 1450 725.00 43.840620
2017 1478 739.00 69.296465
Groups can be filtered with the filter() function.
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print(df.groupby('Team').filter(lambda x: len(x) >= 3))
Points Rank Team Year
0 876 1 Riders 2014
1 789 2 Riders 2015
4 741 3 Kings 2014
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
11 690 2 Riders 2017
Concatenating
When working with a little bin more complex data like in pandas the concatenation can become a tricky thing. pandas offers a special function:
pd.concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False)
The axis parameter controls how the concatenation is done - either by columns or by rows (row default).
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print(pd.concat([one,two]))
print("-------")
print(pd.concat([one,two],axis=1))
-
by row
Marks_scored Name subject_id 1 98 Alex sub1 2 90 Amy sub2 3 87 Allen sub4 4 69 Alice sub6 5 78 Ayoung sub5 1 89 Billy sub2 2 80 Brian sub4 3 79 Bran sub3 4 97 Bryce sub6 5 88 Betty sub5
-
by column
Marks_scored Name subject_id Marks_scored Name subject_id 1 98 Alex sub1 89 Billy sub2 2 90 Amy sub2 80 Brian sub4 3 87 Allen sub4 79 Bran sub3 4 69 Alice sub6 97 Bryce sub6 5 78 Ayoung sub5 88 Betty sub5
By concatenation new labels can be assigned to the different parts:
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print(pd.concat([one,two],keys=['x','y'],ignore_index=False))
Marks_scored Name subject_id
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
Later those new keys can be used in order to distinguish from which set the row came from. Appending is also possible and it takes the simple form:
one.append(two)
Categories
A lot of times some string-fields in the data aren’t just some random text but a repetitive and an element of some predefined set of possible values. Those are the categorical types of data. Something like [big, medium, small]. Categorical variables can take on only a limited, and usually fixed number of possible values. Besides the fixed length, categorical data might have an order but cannot perform the numerical operation. Categorical is a Pandas data type. A simple example to create a Series object that only can contain [a, b, c]
import pandas as pd
s = pd.Series(["a","b","c","a"], dtype="category")
print(s)
This gives us:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
There is also a Categorical object in pandas specifically for dealing with categorical data. The general constructor is as follows:
pandas.Categorical(values, categories, ordered)
If categories aren’t provided, they are inferred from the values. ordered specifies whether or not on categories is bigger or not than other.
import pandas as pd
cat = cat=pd.Categorical(
['a','b','c','a','b','c','d'],
['c', 'b', 'a'],
ordered=True)
print(cat)
[a, b, c, a, b, c, NaN]
Categories (3, object): [c < b < a]
obj.cat.categories command is used to get the categories of the object. Removing categories is also something that comes in handy and of course it’s possible with pandas
import pandas as pd
s = pd.Series(["a","b","c","a"], dtype="category")
print("Original object:")
print(s)
print("After removal:")
print( s.cat.remove_categories("a"))
Original object:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
After removal:
0 NaN
1 b
2 c
3 NaN
dtype: category
Categories (2, object): [b, c]
Reading Data from .csv-files
At the beginning probably each applications loads some date from the file system or link or whatever. pandas provides IO API for reading data from .cvs-files. The two main functions for reading text files are read_csv() and read_table(). They use similar procedures to intelligently convert tabular data into a DataFrame object. The general form of the functions:
pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',
names=None, index_col=None, usecols=None
---------
pandas.read_csv(filepath_or_buffer, sep='\t', delimiter=None, header='infer',
names=None, index_col=None, usecols=None
So say our temp.cvs looks like this:
S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900
and represents this:
S.No | Name | Age | City | Salary |
---|---|---|---|---|
1 | Tom | 28 | Toronto | 20000 |
2 | Lee | 32 | HongKong | 3000 |
3 | Steven | 43 | Bay Area | 8300 |
4 | Ram | 38 | Hyderabad | 3900 |
We can read this as:
import pandas as pd
df=pd.read_csv("temp.csv")
print(df)
A lot of the data in .cvs files has a special column that specifies the index of the row. Pandas can take this into consideration:
import pandas as pd
df=pd.read_csv("temp.csv",index_col=['S.No'])
print(df)
Skipping rows can be achieved through the skiprows=n argument of read_cvs()